CHEMISTRY STUDY MATERIALS FOR CLASS 9

(MCQ Type Questions – Answers) Ganesh Kumar Date: 08/07/2020

ATOMS AND MOLECULES

	7 11 0101									
15. Which of the following represents the correct relation between Avogadro's										
number (N_o), number of particles (N) and moles (n)?										
	(a) $n = N / N_o$	(b) $n = N_o / N$	(c) $n = N N_o$	(d) all are correct						
16.	The atomicity of K ₂ Cr ₂	O ₇ is								
	(a) 9	(b) 11	(c) 10	(d) 12						
17.	The formula for quickl	ime is								
	(a) CaCl ₂	(b) CaCO ₃	(c) Ca(OH) ₂	(d) CaO						
18.	The symbol of cadmium is									
	(a) Ca	(b) Cu	(c) Cm	(d) Cd						
19.	All noble gas molecules are									
	(a) Monoatomic	(b) Diatomic	(c) Triatomic	(d) Both I and II						
20.	The valency of nitrogen in NH3 is									
	(a) 1	(b) 3	(c) 4	(d) 5						
21.	The formula of ethanol is C ₂ H ₅ OH. What will be its molecular mass?									
	(a) 46 U	(b) 34 u	(c) 34 g	(d) 46 g						
22.	Number of moles present in 28g of nitrogen atoms are									
	(a) 1 mole	(b) 2.3 moles	(c) 0.5 mole	(d) 2 moles						
23.	The molecular mass o	f x is 106. x can l	be							

(a) $CaCO_3$ (b) SO_3 (c) Na_2CO_3 (d) NaCl

 (a) Atoms cannot be created or destroyed (b) Atoms of different elements have different sizes, masses and chemical properties (c) Atoms of same elements can combine in only one ratio to produce more than any one compound (d) Atoms are very finy particles which cannot be further divided 25. Which of the following is a wrong Combination? (a) 6.022 * 10²³ molecules of oxygen = 32g of oxygen (b) 6.022 * 10²³ atoms of sodium = 23g of sodium (c) 6.022 * 10²³ atoms of C = 24g of carbon (d) 6.022 * 10²³ atoms of H = 1g of hydrogen atoms 26. Which of the following has largest number of particles? (a) 8g of CH₄ (b) 4.4g of CO₂ (c) 34.2g of C₁₂H₂₂O₁₁ (d)2g of H₂ 27. The number of molecules in 16.0g of oxygen is: (a) 6.02×10²³ (b) 6.02×10⁻²³ (c) 3.01×10⁻²³ (d) 3.01×10 28. The percentage of hydrogen in H₂O is: (a) 8.88 (b) 11.12 (c) 20.60 (d) 80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 1.82×10 (e) 9.108×10⁵⁴ (d) 1.82×10 	VA / L= 1	Pala a sa a sa Ha a Call			Dalla da alad	- 11 0				
(b) Atoms of different elements have different sizes, masses and chemical properties (c) Atoms of same elements can combine in only one ratio to produce more than any one compound (d) Atoms are very tiny particles which cannot be further divided 25. Which of the following is a wrong Combination? (a) 6.022 * 10 ²³ molecules of oxygen = 32g of oxygen (b) 6.022 * 10 ²³ ions of sodium = 23g of sodium (c) 6.022 * 10 ²³ atoms of C = 24g of carbon (d) 6.022 * 10 ²³ atoms of H = 1g of hydrogen atoms 26. Which of the following has largest number of particles? (a) 8g of CH ₄ (b) 4.4g of CO ₂ (c) 34.2g of C ₁₂ H ₂₂ O ₁₁ (d)2g of H ₂ 27. The number of molecules in 16.0g of oxygen is: (a) 6.02×10 ²³ (b) 6.02×10 ⁻²³ (c) 3.01×10 ⁻²³ (d) 3.01×10 ⁻²³ 28. The percentage of hydrogen in H ₂ O is: (a) 8.88 (b) 11.12 (c) 20.60 (d) 80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield	wn	ich among the foll	owing is not a postulo	ate of	Dalton's atomi	c theory?				
(c) Atoms of same elements can combine in only one ratio to produce more than any one compound (d) Atoms are very tiny particles which cannot be further divided 25. Which of the following is a wrong Combination? (a) 6.022 * 10 ²³ molecules of oxygen = 32g of oxygen (b) 6.022 * 10 ²³ atoms of sodium = 23g of sodium (c) 6.022 * 10 ²³ atoms of C = 24g of carbon (d) 6.022 * 10 ²³ atoms of H = 1g of hydrogen atoms 26. Which of the following has largest number of particles? (a) 8g of CH ₄ (b) 4.4g of CO ₂ (c) 34.2g of C ₁₂ H ₂₂ O ₁₁ (d)2g of H ₂ 27. The number of molecules in 16.0g of oxygen is: (a) 6.02×10 ²³ (b) 6.02×10 ⁻²³ (c) 3.01×10 ⁻²³ (d) 3.01×10 28. The percentage of hydrogen in H ₂ O is: (a) 8.88 (b) 11.12 (c) 20.60 (d) 80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 485.2g 30. How many moles of electron weight one kilogram? (a) 6.023×10 ²³ (b) 6.023×10 ⁸ (c) 9.108×10 ⁵⁴ (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield	(a) Atoms cannot be created or destroyed									
(c) Atoms of same elements can combine in only one ratio to produce more than any one compound (d) Atoms are very tiny particles which cannot be further divided 25. Which of the following is a wrong Combination? (a) 6.022 * 10 ²³ molecules of oxygen = 32g of oxygen (b) 6.022 * 10 ²³ ions of sodium = 23g of sodium (c) 6.022 * 10 ²³ atoms of C = 24g of carbon (d) 6.022 * 10 ²³ atoms of H = 1g of hydrogen atoms 26. Which of the following has largest number of particles? (a) 8g of CH ₄ (b) 4.4g of CO ₂ (c) 34.2g of C ₁₂ H ₂₂ O ₁₁ (d)2g of H ₂ 27. The number of molecules in 16.0g of oxygen is: (a) 6.02×10 ²³ (b) 6.02×10 ⁻²³ (c) 3.01×10 ⁻²³ (d) 3.01×10 28. The percentage of hydrogen in H ₂ O is: (a) 8.88 (b) 11.12 (c) 20.60 (d) 80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield	(b)	(b) Atoms of different elements have different sizes, masses and chemical								
than any one compound (d) Atoms are very tiny particles which cannot be further divided 25. Which of the following is a wrong Combination? (a) 6.022 * 10 ²³ molecules of oxygen = 32g of oxygen (b) 6.022 * 10 ²³ ions of sodium = 23g of sodium (c) 6.022 * 10 ²³ atoms of C = 24g of carbon (d) 6.022 * 10 ²³ atoms of H = 1g of hydrogen atoms 26. Which of the following has largest number of particles? (a) 8g of CH ₄ (b) 4.4g of CO ₂ (c) 34.2g of C ₁₂ H ₂₂ O ₁₁ (d)2g of H ₂ 27. The number of molecules in 16.0g of oxygen is: (a) 6.02×10 ²³ (b) 6.02×10 ⁻²³ (c) 3.01×10 ⁻²³ (d) 3.01×10 28. The percentage of hydrogen in H ₂ O is: (a) 8.88 (b) 11.12 (c) 20.60 (d) 80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 485.2g 30. How many moles of electron weight one kilogram? (a) 6.023×10 ²³ (b) 6.023×10 ²³ (c) 9.108×10 ⁵⁴ (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield		properties								
(d) Atoms are very tiny particles which cannot be further divided 25. Which of the following is a wrong Combination? (a) 6.022 * 10 ²³ molecules of oxygen = 32g of oxygen (b) 6.022 * 10 ²³ ions of sodium = 23g of sodium (c) 6.022 * 10 ²³ atoms of C = 24g of carbon (d) 6.022 * 10 ²³ atoms of H = 1g of hydrogen atoms 26. Which of the following has largest number of particles? (a) 8g of CH ₄ (b) 4.4g of CO ₂ (c) 34.2g of C ₁₂ H ₂₂ O ₁₁ (d)2g of H ₂ 27. The number of molecules in 16.0g of oxygen is: (a) 6.02×10 ²³ (b) 6.02×10 ⁻²³ (c) 3.01×10 ⁻²³ (d) 3.01×10 28. The percentage of hydrogen in H ₂ O is: (a) 8.88 (b) 11.12 (c) 20.60 (d) 80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield	(c) Atoms of same elements can combine in only one ratio to produce more									
25. Which of the following is a wrong Combination? (a) 6.022 * 10 ²³ molecules of oxygen = 32g of oxygen (b) 6.022 * 10 ²³ ions of sodium = 23g of sodium (c) 6.022 * 10 ²³ atoms of C = 24g of carbon (d) 6.022 * 10 ²³ atoms of H = 1g of hydrogen atoms 26. Which of the following has largest number of particles? (a) 8g of CH ₄ (b) 4.4g of CO ₂ (c) 34.2g of C ₁₂ H ₂₂ O ₁₁ (d)2g of H ₂ 27. The number of molecules in 16.0g of oxygen is: (a)6.02×10 ²³ (b)6.02×10 ⁻²³ (c)3.01×10 ⁻²³ (d)3.01×10 28. The percentage of hydrogen in H ₂ O is: (a) 8.88 (b)11.12 (c)20.60 (d)80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a)475.5g (b)485.5g (c)475.2g (d)485.2g 30. How many moles of electron weight one kilogram? (a) 6.023×10 ²³ (b) 6.023×10 ⁸ (c) 9.108×10 ⁵⁴ (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield		than any one con	npound							
(a) 6.022 * 10 ²³ molecules of oxygen = 32g of oxygen (b) 6.022 * 10 ²³ ions of sodium = 23g of sodium (c) 6.022 * 10 ²³ atoms of C = 24g of carbon (d) 6.022 * 10 ²³ atoms of H = 1g of hydrogen atoms 26. Which of the following has largest number of particles? (a) 8g of CH ₄ (b) 4.4g of CO ₂ (c) 34.2g of C ₁₂ H ₂₂ O ₁₁ (d)2g of H ₂ 27. The number of molecules in 16.0g of oxygen is: (a) 6.02×10 ²³ (b) 6.02×10 ⁻²³ (c) 3.01×10 ⁻²³ (d) 3.01×10 28. The percentage of hydrogen in H ₂ O is: (a) 8.88 (b) 11.12 (c) 20.60 (d) 80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield	(d) Atoms are very tiny particles which cannot be further divided									
(b) 6.022 * 10 ²³ ions of sodium = 23g of sodium (c) 6.022 * 10 ²³ atoms of C = 24g of carbon (d) 6.022 * 10 ²³ atoms of H = 1g of hydrogen atoms 26. Which of the following has largest number of particles? (a) 8g of CH ₄ (b) 4.4g of CO ₂ (c) 34.2g of C ₁₂ H ₂₂ O ₁₁ (d)2g of H ₂ 27. The number of molecules in 16.0g of oxygen is: (a) 6.02×10 ²³ (b) 6.02×10 ⁻²³ (c) 3.01×10 ⁻²³ (d)3.01×10 28. The percentage of hydrogen in H ₂ O is: (a) 8.88 (b)11.12 (c)20.60 (d)80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 485.2g 30. How many moles of electron weight one kilogram? (a) 6.023×10 ²³ (b) 6.023×10 ⁸ (c) 9.108×10 ⁵⁴ (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield	25. Which of the following is a wrong Combination?									
(c) 6.022 * 10 ²³ atoms of C = 24g of carbon (d) 6.022 * 10 ²³ atoms of H = 1g of hydrogen atoms 26. Which of the following has largest number of particles? (a) 8g of CH ₄ (b) 4.4g of CO ₂ (c) 34.2g of C ₁₂ H ₂₂ O ₁₁ (d)2g of H ₂ 27. The number of molecules in 16.0g of oxygen is: (a) 6.02×10 ²³ (b) 6.02×10 ⁻²³ (c) 3.01×10 ⁻²³ (d) 3.01×10 28. The percentage of hydrogen in H ₂ O is: (a) 8.88 (b) 11.12 (c) 20.60 (d) 80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 485.2g 30. How many moles of electron weight one kilogram? (a) 6.023×10 ²³ (b) 6.023×10 ⁸ (c) 9.108×10 ⁵⁴ (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield	(a) 6.022 * 10 ²³ molecules of oxygen = 32g of oxygen									
(d) 6.022 * 10 ²³ atoms of H = 1g of hydrogen atoms 26. Which of the following has largest number of particles? (a) 8g of CH ₄ (b) 4.4g of CO ₂ (c) 34.2g of C ₁₂ H ₂₂ O ₁₁ (d)2g of H ₂ 27. The number of molecules in 16.0g of oxygen is: (a) 6.02×10 ²³ (b) 6.02×10 ⁻²³ (c) 3.01×10 ⁻²³ (d) 3.01×10 28. The percentage of hydrogen in H ₂ O is: (a) 8.88 (b) 11.12 (c) 20.60 (d) 80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 485.2g 30. How many moles of electron weight one kilogram? (a) 6.023×10 ²³ (b) 6.023×10 ⁸ (c) 9.108×10 ⁵⁴ (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield	(b) 6.022 * 10 ²³ ions of sodium = 23g of sodium									
(d) 6.022 * 10 ²³ atoms of H = 1g of hydrogen atoms 26. Which of the following has largest number of particles? (a) 8g of CH ₄ (b) 4.4g of CO ₂ (c) 34.2g of C ₁₂ H ₂₂ O ₁₁ (d)2g of H ₂ 27. The number of molecules in 16.0g of oxygen is: (a) 6.02×10 ²³ (b) 6.02×10 ⁻²³ (c) 3.01×10 ⁻²³ (d) 3.01×10 28. The percentage of hydrogen in H ₂ O is: (a) 8.88 (b) 11.12 (c) 20.60 (d) 80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 485.2g 30. How many moles of electron weight one kilogram? (a) 6.023×10 ²³ (b) 6.023×10 ⁸ (c) 9.108×10 ⁵⁴ (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield										
26. Which of the following has largest number of particles? (a) 8g of CH ₄ (b) 4.4g of CO ₂ (c) 34.2g of C ₁₂ H ₂₂ O ₁₁ (d)2g of H ₂ 27. The number of molecules in 16.0g of oxygen is: (a) 6.02×10 ²³ (b) 6.02×10 ⁻²³ (c) 3.01×10 ⁻²³ (d) 3.01×10 28. The percentage of hydrogen in H ₂ O is: (a) 8.88 (b) 11.12 (c) 20.60 (d) 80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 485.2g 30. How many moles of electron weight one kilogram? (a) 6.023×10 ²³ (b) 6.023×10 ⁸ (c) 9.108×10 ⁵⁴ (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield										
(a) 8g of CH ₄ (b) 4.4g of CO ₂ (c) 34.2g of C ₁₂ H ₂₂ O ₁₁ (d)2g of H ₂ 27. The number of molecules in 16.0g of oxygen is: (a) 6.02×10 ²³ (b) 6.02×10 ⁻²³ (c) 3.01×10 ⁻²³ (d)3.01×10 28. The percentage of hydrogen in H ₂ O is: (a) 8.88 (b)11.12 (c)20.60 (d)80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c)475.2g (d) 485.2g 30. How many moles of electron weight one kilogram? (a) 6.023×10 ²³ (b) 6.023×10 ⁸ (c) 9.108×10 ⁵⁴ (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield										
(c) 34.2g of C ₁₂ H ₂₂ O ₁₁ (d)2g of H ₂ 27. The number of molecules in 16.0g of oxygen is: (a) 6.02×10 ²³ (b) 6.02×10 ⁻²³ (c) 3.01×10 ⁻²³ (d)3.01×10 28. The percentage of hydrogen in H ₂ O is: (a) 8.88 (b)11.12 (c)20.60 (d)80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 485.2g 30. How many moles of electron weight one kilogram? (a) 6.023×10 ²³ (b) 6.023×10 ⁸ (c) 9.108×10 ⁵⁴ (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield	26. Which of the following has largest number of particles?									
27. The number of molecules in 16.0g of oxygen is: (a) 6.02×10 ²³ (b) 6.02×10 ⁻²³ (c) 3.01×10 ⁻²³ (d) 3.01×10 28. The percentage of hydrogen in H ₂ O is: (a) 8.88 (b) 11.12 (c) 20.60 (d) 80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 485.2g 30. How many moles of electron weight one kilogram? (a) 6.023×10 ²³ (b) 6.023×10 ⁸ (c) 9.108×10 ⁵⁴ (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield	(a) 8g of CH ₄		(b) 4	.4g of CO ₂					
(a) 6.02×10 ²³ (b) 6.02×10 ⁻²³ (c) 3.01×10 ⁻²³ (d) 3.01×10 28. The percentage of hydrogen in H ₂ O is: (a) 8.88 (b) 11.12 (c) 20.60 (d) 80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 485.2g 30. How many moles of electron weight one kilogram? (a) 6.023×10 ²³ (b) 6.023×10 ⁸ (c) 9.108×10 ⁵⁴ (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield	(c) 34.2g of C ₁₂ H ₂₂ O ₁₁			(d)2g of H ₂						
28. The percentage of hydrogen in H_2O is: (a) 8.88 (b) 11.12 (c) 20.60 (d) 80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 485.2g 30. How many moles of electron weight one kilogram? (a) 6.023×10^{23} (b) 6.023×10^{8} (c) 9.108×10^{54} (d) 1.82×10^{6} 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield	27. The number of molecules in 16.0g of oxygen is:									
(a) 8.88 (b) 11.12 (c) 20.60 (d) 80.0 29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 485.2g 30. How many moles of electron weight one kilogram? (a) 6.023×10 ²³ (b) 6.023×10 ⁸ (c) 9.108×10 ⁵⁴ (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield	(a)6.02×10 ²³	(b)6.02×10 ⁻²³	(c)3.	01×10 ⁻²³	(d)3.01×10 ²³				
29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3. (a) 475.5g (b) 485.5g (c) 475.2g (d) 485.2g 30. How many moles of electron weight one kilogram? (a) 6.023×10 ²³ (b) 6.023×10 ⁸ (c) 9.108×10 ⁵⁴ (d) 1.82×10 ⁸ 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield	28. The percentage of hydrogen in H ₂ O is:									
(a) 475.5g (b) 485.5g (c) 475.2g (d) 485.2g (d) 485.2g (d) 485.2g (d) 6.023×10 ²³ (b) 6.023×10 ⁸ (c) 9.108×10 ⁵⁴ (d) 1.82×10 ³ (d) 1.82×10 ³ (25.4g of iodine and 14.2g of chlorine are made to react completely to yield	(a) 8.88	(b)11.12	(c)20	0.60	(d)80.0				
 30. How many moles of electron weight one kilogram? (a) 6.023×10²³ (b) 6.023×10⁸ (c) 9.108×10⁵⁴ (d) 1.82×10 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield 	29. Find the mass of oxygen contained in 1 kg of potassium nitrate KNO3.									
(a) 6.023×10 ²³ (b) 6.023×10 ⁸ (c) 9.108×10 ⁵⁴ (d) 1.82×10 ⁵⁴ 31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield	(a)475.5g	(b)485.5g	(c)47	75.2g	(d)485.2g				
31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield	30. How many moles of electron weight one kilogram?									
	(a) 6.023×10 ²³	(b) 6.023×108	(c) 9	.108×10 ⁵⁴	(d) 1.82×10 ⁶				
mixture of ICI and ICI3. Calculate the ratio of moles of ICI and ICI3:	31. 25.4g of iodine and 14.2g of chlorine are made to react completely to yield a									
	mixture of ICI and ICI3. Calculate the ratio of moles of ICI and ICI3:									
(a)1:1 (b)2:1 (c)3:1 (d)1:2	(a)1: 1	(b)2: 1	(c)3:	1	(d)1:2				
		(a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (in) (a) (in) (in) (in) (in) (in) (in) (in) (in	(a) Atoms cannot be (b) Atoms of different properties (c) Atoms of same election any one condition (d) Atoms are very time. Which of the following (a) 6.022 * 10 ²³ mole (b) 6.022 * 10 ²³ atom (d) 6.022 * 10 ²³ atom (d) 6.022 * 10 ²³ atom (d) 6.022 * 10 ²³ atom Which of the following (a) 8g of CH ₄ (c) 34.2g of C ₁₂ H ₂₂ O ₁ . The number of molection (a) 6.02×10 ²³ The percentage of hy (a) 8.88 Find the mass of oxyg (a) 475.5g How many moles of election (a) 6.023×10 ²³ 25.4g of iodine and 1 mixture of ICI and ICI:	(a) Atoms cannot be created or destroyed (b) Atoms of different elements have different properties (c) Atoms of same elements can combine than any one compound (d) Atoms are very tiny particles which can which of the following is a wrong Combine (a) 6.022 * 10 ²³ molecules of oxygen = 32 (b) 6.022 * 10 ²³ ions of sodium = 23g of so (c) 6.022 * 10 ²³ atoms of C = 24g of carbo (d) 6.022 * 10 ²³ atoms of H = 1g of hydrog which of the following has largest number (a) 8g of CH ₄ (c) 34.2g of C ₁₂ H ₂₂ O ₁₁ The number of molecules in 16.0g of oxygen (a) 6.02 × 10 ²³ (b) 6.02 × 10 ⁻²³ The percentage of hydrogen in H ₂ O is: (a) 8.88 (b) 11.12 Find the mass of oxygen contained in 1 kg (a) 475.5g (b) 485.5g How many moles of electron weight one king (a) 6.023 × 10 ²³ (b) 6.023 × 10 ⁸ 25.4g of iodine and 14.2g of chlorine are mixture of ICI and ICI ₃ . Calculate the ratio	(a) Atoms cannot be created or destroyed (b) Atoms of different elements have different size properties (c) Atoms of same elements can combine in only than any one compound (d) Atoms are very tiny particles which cannot be which of the following is a wrong Combination? (a) 6.022 * 1023 molecules of oxygen = 32g o	(b) Atoms of different elements have different sizes, masses and properties (c) Atoms of same elements can combine in only one ratio to prothan any one compound (d) Atoms are very tiny particles which cannot be further divided which of the following is a wrong Combination? (a) 6.022 * 1023 molecules of oxygen = 32g of oxygen (b) 6.022 * 1023 ions of sodium = 23g of sodium (c) 6.022 * 1023 atoms of C = 24g of carbon (d) 6.022 * 1023 atoms of H = 1g of hydrogen atoms Which of the following has largest number of particles? (a) 8g of CH4 (b) 4.4g of CO2 (c) 34.2g of C12H22O11 (d)2g of H2 The number of molecules in 16.0g of oxygen is: (a) 6.02×1023 (b) 6.02×10-23 (c) 3.01×10-23 The percentage of hydrogen in H2O is: (a) 8.88 (b) 11.12 (c) 20.60 Find the mass of oxygen contained in 1 kg of potassium nitrate K (a) 475.5g (b) 485.5g (c) 475.2g How many moles of electron weight one kilogram? (a) 6.023×1023 (b) 6.023×108 (c) 9.108×1054 25.4g of iodine and 14.2g of chlorine are made to react complemixture of ICI and ICI3. Calculate the ratio of moles of ICI and ICI				
